Index

- Symbols and Numerics

\{\} (braces), 94
! (factorial operator), 123
\pm (two values), 194
> (greater than), 141
\geq (greater than or equal to), 147
\subset (subsets), 94
^ (estimated value), 291
I (conditional probabilities), 102, 104
∞ (infinity), 157
< (less than), 141
\leq (less than or equal to), 141
\notin (members not in set), 94
\in (membership in set), 94
\cap (intersections), mathematical operation, 96-97
\cup (union), mathematical operation, 95-96

* (asterisk) character, 47
^ (caret) character, 47
1- (confidence coefficient), 195
2.71828 (e), 135

25th percentile, 66, 362
50th percentile, 66, 362
75th percentile, 66, 362

- A •
addition rule, probability theory
formulas, 106-108, 363
use of, 14
adjusted coefficient of determination
(adjusted R²), 313, 314-315
alpha (α) error, 206
alternative hypothesis $\left(H_{1}\right)$
formula, 367
F-test, 316
hypothesis testing, population variance, 257-259
left-tailed test, 204
overview, 235
right-tailed test, 203-204
t-test, 301, 321
two-tailed test, 205

ANOVA (analysis of variance). See also
F-distribution
alternative hypothesis, 240
critical value, finding, 247-248
degrees of freedom, 247-248
F-statistic, 246
F-table, 247-248
level of significance, 240-241
null hypothesis, 240
one-way, 239, 247, 248
overview, 233, 239
table, 318
test statistic, computing, 241-246
two-way, 239
uses, 239
arithmetic mean, 40-42
arrangements, 124
asterisk (*) character, 47
autocorrelations, 308, 358, 370
average number of events in time period (λ), 135, 265

- B

b (intercept), 20, 38, 285, 286
b (upper limit of interval), 145
base, rectangle, 144
bell-shaped curve, 151-153
beta (β) error, 206
bias errors, 360
BINOMDIST function, Microsoft Excel 2007, 127
binomial distribution
expected value, 128
factorial, 123-124
formula, 123, 125-126, 364
graphing on histogram, 129-131
moments, 127-128
overview, 16, 122-123
process, 122
standard deviation, 128
uses, 122
variance, 128
BINOM.IDST function, Microsoft Excel 2010, 127
braces (\{\}), 94

- c -
caret (${ }^{\wedge}$) character, 47
causality errors, 357-358
center of data set. See mean (average); median; mode
centered moving averages, 343-344, 371
central limit theorem (CLT), 18, 179-184, 365-366
change in $\mathrm{X}(\Delta X), 285$
change in $\mathrm{Y}(\Delta Y), 285$
chi-square distribution $\left(\chi^{2}\right)$. See also goodness of fit test; hypothesis testing, population variance
applications, 252
chi-square table, 261, 264
features, 252-253
graphic illustration, 253-254
moments, 255-256
overview, 236, 252
for positive values, $252-253$
positively skewed, 252-253
random variable, 255
chi-square table, 261,264
class frequency distribution, 27
class width, 26-27
cluster samples, probability sampling, 171-172
Cochrane-Orcutt procedure, 308
coefficient of determination (R^{2})
errors, 356
testing population regression equation, 298-299
coefficient of variation (CV)
defined, 69, 72
formula, 69-70
COMBIN function, Microsoft Excel, 125
combinations
formula, 124
number of, 125
complement, mathematical operation, 97-98
complement rule, probability theory
formulas, 108-109, 363
as mathematical operation, 97-98
purpose, 14, 106
conditional probabilities (I), 102, 104, 105
confidence coefficient ($1-\alpha$), 195
confidence intervals
defined, 19, 187, 195, 366
errors, statistical analysis, 355
with known population standard deviation, 195-199, 366
statistical inference, 18-19
with unknown population standard deviation, 199-200, 366
constant (e), 135
constant (. e^{x}), calculator key, 135
continuous probability distributions, 16-17, 365. See also chi-square distribution; F-distribution; normal distribution; Student's t-distribution; uniform distribution
continuously compounded interest, 135
convenience samples, nonprobability sampling, 172
correlation coefficient
versus covariance, 72, 82-85
defined, 13, 72
diversification, measuring, 88-90
errors, 357-358
interpreting, 85-86
measure of association, 71, 362
negative, 72
population, 80-82
positive, 72
sample, 73-77
scatter plots, 86-88
zero, 72
covariance
versus correlation coefficient, 72, 82-85
defined, 13
measure of association, 71, 362
negative, 72
population, 77-80
positive, 72
sample, 73-77
zero, 72
critical values, hypothesis testing
common, standard normal distribution, 213
defined, 208
degrees of freedom, 210
F-test, 319-320
large sample, 213
left-tailed test overview, 209
left-tailed test with small sample, 211-212
overview, 260
right-tailed test overview, 209
right-tailed test with large sample, 214-215
right-tailed test with small sample, 209-211
small sample, 209-210
standard normal table, positive values, 214
Student's t-distribution, 210
t-test, 304-305, 322-324
two-tailed test overview, 209
two-tailed test with large sample, 215-216
two-tailed test with small sample, 212-213
cumulative frequency distributions, 30-31
cumulative probabilities, 154
CV (coefficient of variation)
defined, 69, 72
formula, 69-70
cyclical effects, time series forecasting, 328

- D

data
class width, 26-27
data set, 8, 11-12, 55
defined, 8
frequency distribution, cumulative, 30-31
frequency distribution, qualitative, 29-30
frequency distribution, quantitative, 25-29
frequency distribution, relative, 27-29
graphic analysis, 8-11
graphing, 31-38
measures of association, 13
measures of dispersion, 12-13
qualitative (non-numerical), 29-30, 24, 337
quantitative (numerical), 24-27
spread, 13
decision rule, hypothesis testing
left-tailed test and critical value, 216
right-tailed test and critical value, 216
two-tailed test and critical value, 216
degrees of freedom (df)
ANOVA, 247
chi-square, 236-237
denominator, 234, 236, 237, 370
F-distribution, 234, 370
numerator, 234, 236, 237, 370
t-distribution, 189
denominator degrees of freedom, 234, 236, 237, 370
denominators, 45
dependent variable (Y), 20, 283, 370
discrete distributions. See also binomial distribution; geometric distribution; Poisson distribution
defined, 121, 363
expected value formula, 364
moments, 363-364
overview, 16
standard deviation formula, 364
uses, 141
variance formula, 364
dispersion measures, 12
distribution errors, 360
diversification, measuring, 88-90
double-counting, 106
dummy variables, 337-338
Durbin-Watson test, 308

- E

e (constant), 135
elements
defined, 93
membership in sets, 94
empty sets, 97, 100-101
equivalent standard normal probabilities, 161-164
error term $\left(\varepsilon_{i}\right), 22,290$
errors
alpha, 206
beta, 206
bias, 360
causality, 357-358
coefficient of determination, 356
confidence intervals, 357-358
correlation as causality, 357-358
correlation coefficient, 357-358
distribution, 360
error sum of square, 242-244
false positive (Type 1), 205-207, 235, 301-302, 317
false negative (Type II), 205-207, 235, 301-302, 317
hypothesis test results misinterpretation, 356
margin of, 18-19, 187, 194-195
mean square, 245-246, 348-349
misleading graphs, 353-355
multicollinearity, 359
normality assumption, 357
null hypothesis, interpreting, 356
overconfidence in forecasts, 359-360
random, 360
regression equation, interpreting, 358
sampling, 242-244
standard, 178, 180
wrong conclusion in confidence interval, 355
wrong distribution, 360
ESS (explained sum of squares), 298-299
estimated value, 291
estimates, 194
estimators, 194
events
defined, 99, 112
independent, 100, 102-103, 105
intersection, 109-110
mutually exclusive, 100, 108
probability, computing, 101, 106-110
sample space subset, 99
. e^{x} (constant), calculator key, 135
$E(X)$ (expected value of X), 118, 145, 237
Excel, Microsoft, functions in
BINOMDIST, 127
BINOM.IDIST, 127
COMBIN, 125
EXP, 135
PERCENTILE, 66
POISSON, 136
POISSON.DIST, 136
QUARTILE, 67
RANDBETWEEN, 168, 169
EXP function, Microsoft Excel, 135
expected frequencies, 266
expected value
binomial distribution, 128
chi-square distribution, 255
defined, 117
F random variable, 236-237
formula, 117-118, 364
geometric distribution, 133
histogram, 119
Poisson distribution, 136
probability distribution, 117-119, 128
t-distribution, 189-190
uniform distribution, 145-146
expected value of $X(E(X)), 118,145,237$
explained sum of squares (ESS), 298-299
exponential moving averages, forecasting, 22, 371
exponential smoothing, time series, 345-347, 371
exponents, 47

- F•

F random variable, 236
factorial operator (!), 123-124, 268-269
false positive (Type 1) error
F-test, 317
overview, 205-207, 235
t-test, 301-302
false negative (Type II) error F-test, 317
overview, 205-207, 235
t-test, 301-302
fat tails, 357
F-distribution
as continuous probability distribution, 233-234
degrees of freedom, 234
denominator degrees of freedom, 236, 237
expected value, 237
F-statistic, 246, 318
F-table, 247-248
level of significance, 234-235
numerator degrees of freedom, 236, 237
overview, 233-234
positively skewed distribution, 234
properties, 234
rejection region, 248
spreadsheet, 249-250
versus t-distribution, 234
fifth root, 44
finite outcomes, 141
finite population correction factor, 178
first moment, probability distribution, 127
first quartile $\left(\mathrm{Q}_{1}\right), 66,362$
Fisher, Sir Ronald, 234
forecasting. See also trends, forecasting
models, 327
overconfidence in, 359-360
techniques, 21-22, 371
formulas, statistical
addition rule, 106-108, 363
alternative hypothesis, 202-205, 367
binomial distribution, 123, 125-126, 364
complement rule, 108-109, 363
confidence interval for population mean, 366
critical values, population variances, 369-370
expected value, 117-118, 364
geometric distribution, 131-132, 364
left-tailed test, 204, 367
multiplication rule, 109-110, 363
normal distribution, 365
null hypothesis, 202, 367
Poisson distribution, 135, 364
probability for standard mean, 365-366
regression equation, 358,371
right-tailed test, 204, 367
standard deviation, 364
test statistic, equality of two population means, 277, 368-369
test statistic, population mean, 207-208, 367-368
test statistic, population variances, 266, 369-370
two-tailed test, 205, 367
uniform distribution, 147-150, 365
variance, 119-120, 364
fourth quartile $\left(Q_{4}\right), 66$
frequencies, 24
frequency distributions
cumulative, 30-31
histograms, 31-34
key points, 27
line graphs, 34-35
overview, 24
pie charts, 35-36
qualitative data, 29-30
quantitative data, 25-29
relative frequency distribution, 27-29
scatter plots, 36-38
F-statistic
calculating, 246, 317-318
overview, 317-318
F-table
finding critical values, 247-248, 278, 280
multiple regression analysis, 319
F-test
alternative hypothesis, 316
comparing p-value with level of significance, 320
critical value, 319-320
decision, 320
level of significance, 317
null hypothesis, 316
overview, 316
test statistic, 317-318
functions, 112

- G

Gauss, Johann Carl Friedrich, 150
Gaussian distribution. See also standard normal distribution
formula, 365
goodness of fit test, 271-275
graphing on bell-shaped curve, 151-153
overview, 16-17, 140, 150
properties, 150-151
statistical analysis, 153
symmetry, 150
values, 153
generalized least squares (GLS) estimators, 294
geometric distribution
expected value, 133
formula, 364
histogram, graphing, 134
mean, 42-43
moments, computing, 132-134
overview, 131
standard deviation, 134
variance, 133-134
geometric probabilities
computing, 131-132
formula, 131-132
overview, 16
GLS (generalized least squares) estimators, 294
goodness of fit test
comparing population to normal distribution, 271-275
comparing population to Poisson distribution, 265-270
overview, 251, 264
as right-tailed test, 267
GPAs (grade point averages), 17
graphing
histograms, 8-9, 24, 31-34
lines, 8-10, 24, 34-35
misleading, 353-355
pie charts, 8, 10, 24, 35-36
rectangle graph, 143-144, 146, 150
scatter plots, $8,10-11,24,36-38$
t-distribution, 190-192
types, 8,38
uniform probabilities, 149-150
uses, 23
greater than or equal to (\geq), 147
greater than (>) symbol, 141
gross return, 43

- H•

H_{0} (null hypothesis)
ANOVA, 240
dependent samples, 230
equal variances, 276
errors in interpreting, 356
F-distribution, 234-235
formula, 367
H_{0} (null hypothesis) (continued)
F-test, 316
population variance, 256-257
single population mean, 202, 221, 235, 257
t-test, 301, 321
two population means, 221
H_{1} (alternative hypothesis)
formula, 367
F-test, 316
hypothesis testing, population variance, 257-259
left-tailed test, 204
overview, 235
right-tailed test, 203-204
t-test, 301, 321
two-tailed test, 205
height, rectangle, 144
heteroscedasticity, 308, 358, 370
histograms
benefits, 175
binomial distribution, graphing, 129-131
defined, 8, 116
discrete distributions, 143
examples, 31-34
geometric distribution, 134
overview, 8-9, 24
Poisson distribution, 137-138
probability distribution, 116
sampling distribution, 176-177
horizontal axis (x), 57, 86
hypothesis testing, equality of two population variances
alternative hypothesis, 276-277
critical values, 277-279
decision, 279-280
F-distribution, 275-276
level of significance, 277
null hypothesis, 276, 368
overview, 275-276, 367
test statistic, 277, 370
hypothesis testing, population mean. See also ANOVA
alternative hypothesis, 367
degrees of freedom, 210
hypothesized value of population, 202, 367
left-tailed test, 204, 367
level of significance, 367
null hypothesis, 367
right-tailed test, 203-204, 367
Student t-distribution, 210
two-tailed test, 205, 367
Type 1 error, 206-207
Type II error, 206-207
hypothesis testing, population variance alternative hypothesis, 257-259
chi-square table, 261, 264
critical value, 260-264
formula, weighted average, 267
hypothesized value, 256-257
left-tailed test, 262
level of significance, 259
making decision, 263-264
null hypothesis, 256-257
right-tailed test, 260-262
test statistic, 259-260
test statistic formula, 266, 369
two-tailed test, 262-263
hypothesis testing, steps
alternative hypothesis, 202-205, 235, 367
critical value, comparing, 208-216
decision rule, 216-220
level of significance, 205-207, 235, 367
null hypothesis, 202, 235, 367
overview, 19, 201
test statistic, 207-208
hypothesized value ($\sigma_{0}{ }^{2}$), 256-257
hypothesized value of population $\left(\mu_{0}\right)$, 202, 367
i (index)
expected value, 118
population covariance, 78
population regression equation, 290
sample arithmetic mean, 40
sample covariance, 73
sample variance, 56
In (natural logarithm), 287
independent events, 100, 102-103, 105
independent variables (Xs), 20, 283, 370
independent variables in regression equation (k), 323
infinite outcomes, 141
infinity (∞), 157
integers, 65
intercept (b), 20, 38, 285, 286
intercept coefficient (β_{0}) of regression line, 289
interquartile range (IQR)
defined, 13, 64, 67
as measures of dispersion, 362
outliers, 68
intersections (\cap), mathematical operation, 96-97, 109-110
interval estimates, 194-195
intervals, 24

IQR (interquartile range)
defined, 13, 64, 67
as measures of dispersion, 362
outliers, 68
irregular effects, time series forecasting, 328

- 1•

Jarque-Bera test, 357
Jevons, William Stanley, 357-358
joint probabilities, 102, 103-104
judgment samples, nonprobability sampling, 173

-K•

k (independent variables in regression equation), 323
$-L \cdot$
Latin letters, 42, 174
left-tailed test
as alternative hypothesis, 203
critical value, 209
F-distribution, 279
formula, 367
interpreting, 203
with large sample, 213
population variance, 258, 262
purpose, 204
with small sample, 211-212
t-test, 323
two population means, 221
less than (<), 141
less than or equal to ($(\leq), 141$
level of significance (α)
confidence intervals, 195
equality of two population variances, 277
F-distribution, 234-235
F-test, 317
hypothesis testing, population variance, 259
t-test, 301-302, 321
line graphs
defined, 8
examples, 34-35
overview, 9-10, 24
linear relationships
multiple regression analysis, 310-311
overview, 284-286
scatter plots, 286-289
linear trend, time series, 330-331, 371
linearly related variables, 72

- M

MA (moving averages), forecasting, 22, 341-344, 371
MAD (mean absolute deviation), 348-349
margin of error, 18-19, 187, 194-195
marginal probabilities, 102-103
mathematical operations, for sets
complements, 97-98
intersections, 96-97
membership, 94
overview, 93
subsets, 94-95
unions, 95-96
mean (average)
arithmetic, 40-42
defined, 11, 39
geometric, 42-44
as measure of central tendency, 361
relationship with median, 49-53
weighted arithmetic, 44-46
weighted geometric, 46-48
mean, population (μ)
arithmetic mean, 42
normal distribution, 153
as parameter, 174
population variance, 61
mean, sample (\bar{X})
arithmetic mean, 40-41
overview, 174
sample correlation, 73
sample covariance, 73
sample variance, 56
sampling distributions, 365-366
mean absolute deviation (MAD), 348-349
mean square error (MSE), 245-246, 348-349
measures of association. See also correlation coefficient; covariance
defined, 71
overview, 362
measures of central tendency. See mean (average); median; mode
measures of dispersion, 362. See also interquartile range; percentiles; quartiles; standard deviation; variance
measures of risk. See standard deviation; variance
measures of uncertainty. See standard deviation; variance
median
defined, 11-12, 40, 48
as measure of central tendency, 361
population, calculating for, 48-49
relationship with mean, 49-53
sample, calculating for, 48-49
members not in set (\notin), symbol, 94
membership, mathematical operation, 94
membership in set (\in), symbol, 94
Microsoft Excel functions
BINOMDIST, 127
BINOM.IDIST, 127
COMBIN, 125
EXP, 135
PERCENTILE, 66
POISSON, 136
POISSON.DIST, 136
QUARTILE, 67
RANDBETWEEN, 168, 169
Microsoft website, 127
midpoint, interval, 145
mirror images, 152
mode
defined, 11-12, 40
determining, 53-54
features, 53
as measure of central tendency, 361
uses, 54
moments
binomial distribution, 127-128
chi-square distribution, 255-256
defined, 117, 127, 144, 251
discrete distribution, 363-364
expected value, 117-119
geometric distribution, 132-134
overview, 111, 121
probability distributions, 117-120
sampling distribution, 178
t-distribution, 189-190
uniform distribution, 144-147
variance, 119-120
moving averages (MA), forecasting, 22, 341-344, 371
MSE (mean square error), 245-246, 348-349
MSTSR (treatment mean square), 246
multicollinearity, $325,338,359,370$
multiple regression analysis. See also regression analysis; simple regression analysis
adjusted coefficient of determination, 313, 314-315
F-test, 316-320
linear relationship, 310-311
multicollinearity, $325,338,359,370$
overview, 21, 309
population regression equation, 21, 311-315
predicting value of Y, 313
sample regression equation, 21
t-test, 320-325
variance inflation factor, 325
variation, 314
multiplication rule, probability theory
formulas, 109-110, 363
purpose, 14
mutually exclusive events, 100, 108
mutually exclusive sets, 97

- N

n
binomial probabilities, 123
expected value, 118
population covariance, 78
sample arithmetic mean, 40
sample covariance, 73
sample variance, 56
in sampling distribution, 178
N, in sampling distribution, 178
natural logarithm (In), 287, 310
nCr function, combinations, 125
negative correlation, 72
negative covariance, 72
negatively related variables, 36
negatively skewed data set, 49, 51
no trend, time series regression, 329-330, 371
nonlinear least squares, 287
nonprobability sampling
convenience samples, 172
judgment samples, 173
overview, 172
purposive samples, 173
quota samples, 172-173
normal distribution. See also standard normal distribution
formula, 365
goodness of fit test, 271-275
graphing on bell-shaped curve, 151-153
overview, 16-17, 140, 150
properties, 150-151
statistical analysis, 153
symmetry, 150
values, 153
normality errors, statistical analysis, 357
not a subset (\subseteq), symbol, 94
not in set (\notin), symbol, 94
n -period moving averages, time series, 341-342
null hypothesis $\left(H_{0}\right)$
ANOVA, 240
dependent samples, 230
equal variances, 276
errors in interpreting, 356
F-distribution, 234-235
formula, 367
F-test, 316
population variance, 256-257
single population mean, 202, 221, 235, 257
t-test, 301, 321
two population means, 221
numerator degrees of freedom, 234, 236, 237, 370
numerators, 45
numerical (quantitative) data
class width, 26-27
classes, 24
frequency distribution, 25-26
overview, 24
numerical measure, 11

- 0

observed frequency (O), 266
one-way ANOVA hypothesis test, 239, 247, 248
operations, mathematical. See mathematical operations, for sets
ordinary least squares (OLS) estimators, 294
outliers
defined, 12,39
interquartile range, 68
p.
p (probability of success), 123, 132
paired samples, 369
parameters. See also population mean; population variance
defined, 174
Greek letters for, 174
population standard deviation, 61-64
pdf (probability density function), 365
PERCENTILE function, Microsoft Excel, 66 percentiles
computing, 65-66
defined, 12,64
formula, 65
as measures of dispersion, 362
overview, 64-65
permutations, 125
pie charts
defined, 8
overview, 10, 24, 35-36
point estimates, 194-195
point estimators, 194
Poisson, Siméon Denis, 135
Poisson distribution
expected value, 136
formula, 364
goodness of fit test, 265-270
histogram, graphing, 137-138
overview, 16, 134
probabilities formula, 135
standard deviation, 137
table, 135-136
variance, 137
POISSON function, Microsoft Excel 2007, 136
POISSON.DIST function, Microsoft
Excel 2010, 136
population
arithmetic mean, calculating, 42
defined, 40, 165
geometric mean, calculating, 42-44
parameters, 174
standard deviation, 64
variance, determining, 61-64
weighted arithmetic mean, calculating, 44-46
weighted geometric mean, calculating, 46-48
population correlation coefficient, 78, 80-82
population covariance
determining, 77-80
formula, 77
population mean (μ)
arithmetic mean, 42
normal distribution, 153
as parameter, 174
population variance, 61
population regression equation
multiple regression analysis, 311-315
overview, 289-290
testing, overview, 297-298
testing, using coefficient of determination, 298-299
population standard deviation (σ), 61-64
population variance (σ^{2}), 61, 120
positive correlation, 72
positive covariance, 72
positive skewing
chi-square distribution, 252-253
data set, 49, 52
distribution, 234
F-distribution, 234

Business Statistics For Dummies
positively related variables, 36
probabilities
addition rule, 106-108
basis, 98
complement rule, 108-109
distributions, 15-17
events, computing, 101
multiplication rule, 109-110
overview, 13-14
t-distribution, 193-194
theory, 93
types, 102-105
of union of two events, 106-108
probability density function (pdf), 365
probability distributions. See also
F-distribution; normal distribution; t-distribution
binomial, 16, 122-126, 128-131
chi-square, 236, 252-256, 261, 264
continuous, 141
defined, 115, 121
discrete, 141
expected value, calculating, 128
expected value moment, 117-119
first moment, 127
geometric, 16, 131-134, 365
histogram view, 116
moments, 117-120
Poisson, 16, 134-138, 265-270, 364
properties, 114
random variables, 114-116
sampling, 18, 166, 179-184, 365-366
second central moment, 128
standard deviation, 128
uniform, 16, 139-147, 365
variance, 128
variance moment, 119-120
p (probability of success), 123, 132
probability sampling
cluster samples, 171-172
defined, 167
simple random samples, 167-168
stratified samples, 170-171
systematic samples, 168-169
probability theory
addition rule, 14, 363
basic rules of, 14, 363
complement rule, 14,363
computing probabilities, 106-110
continuous probability distributions, 16-17
discrete probability distributions, 16
elements, 93
multiplication rule, 14, 363
overview, 13-14
probability distributions, 15-16
probability types, 102-105
random experiments, 98-101, 111
random variables, $14-15,111-116$
sets, 93-98
probability values (p-values), 306, 320
product being computed, 46
products, geometric means, 42
purposive samples, nonprobability sampling, 173
p-values (probability values), 306,320

- 0 -
Q_{1} (first quartile), 66
Q_{2} (second quartile), 66
Q_{3} (third quartile), 66,362
Q_{4} (fourth quartile), 66
Q-Q plots, 357
quadratic trend, time series, 331,371
qualitative (non-numerical) data
frequency distribution, 29-30
overview, 24
variable in regression equation, 337
quantile, 196
quantitative (numerical) data
class width, 26-27
classes, 24
frequency distribution, 25-26
overview, 24
QUARTILE function, Microsoft Excel, 67
quartiles
computing, 66-67
defined, 12-13, 64, 66
as measure of dispersion, 362
overview, 66
quota samples, nonprobability sampling, 172-173

- R•

R^{2} (coefficient of determination)
adjusted, 314-315
errors, 356
testing population regression equation, 298-299
RANDBETWEEN function, Microsoft Excel, 168, 169
random errors, 360
random experiments
events, 99-100
overview, 14, 111
probabilities of events, 101
sample space, 99
random number generator, 167-168
random variables (Xs)
chi-square, 255
defined, 111
as function, 112
independent, 20, 283, 370
overview, 14-15
probability distribution, assigning, 114-116
role of, 111-114
range, measure of dispersion, 56
rectangle graph, 143-144, 146, 150
regression analysis. See also multiple regression analysis; simple regression analysis
multicollinearity, 325, 338, 359, 370
overview, 20-21, 283-284
regression equations, 358, 371
spreadsheet programs for, 306-307
SPSS software, IBM for, 306-307
rejection region, F-distribution, 248
relative frequency distribution, 27-29
relative variation
coefficient of variation, 69-70
overview, 68
relative risks, comparing, 69-70
residual sum of squares (RSS), 298-300
residuals, 292
right-tailed test
as alternative hypothesis, 203, 276
critical value, 209
defined, 203-204
dependent samples, 230
F-distribution, 277-278
formula, 367
goodness of fit test as, 265, 267
with large sample, 213-215
one-way ANOVA hypothesis test as, 248
population variance, 258, 260-262
with small sample, 210-211
t-test, 323
two means, 221
two population means, 221
two population means with equal variances, 224
unequal variances, 276
risk. See also standard deviation; variance reducing via diversification, 88-90 relative, 69-70
rounding down, 65
rounding up, 65
RSS (residual sum of squares), 298-300

-S

s (sample standard deviation), 57-60, 174, 365
s^{2} (sample variance), 56-57, 174, 365
sample arithmetic mean, 40-41
sample correlation coefficient, 73-74, 75
sample covariance, 73-76
sample mean (\bar{X})
arithmetic mean, 40-41
overview, 174
sample correlation, 73
sample covariance, 73
sample variance, 56
sampling distributions, 365-366
sample mean for $\mathrm{Y}(\mathrm{Y}), 73$
sample regression equation, 291
sample space (S)
complement, 97-98
defined, $97,99,112$
events, 99-100
sample standard deviation (s), 57-60, 174, 365
sample statistics. See also sample mean; sample standard deviation; sample variance
defined, 166, 174, 365
most important, 365
sample variance (s^{2}), 56-57, 174, 365
samples
arithmetic mean for, calculating, 40-41
defined, 17, 40, 165
geometric mean for, calculating, 42-44
overview, 165-166
weighted arithmetic mean for, calculating, 44-46
weighted geometric mean for, calculating, 46-48
sampling, nonprobability, 172-173
sampling, probability
cluster samples, 171-172
defined, 167
simple random samples, 167-168
stratified samples, 170-171
systematic samples, 168-169
sampling distributions
central limit theorem, 18, 179-184, 365-366
computing moments, 180
defined, 166, 365
finding probability, 180-184
graphic illustration, 175-177
moments, 178
parameters, 174
standard error, 178, 180
statistics, 174
sampling errors, 242-244
sampling techniques, 17-18
scatter plots
defined, 8
linear relationships, 286-289
overview, 10-11, 24, 36-38, 86
showing relationship between two variables, 71,86
seasonal variation, time series forecasting
dummy variables, 337-338
example of, 337-341
multicollinearity, 338
overview, 337
second central moment, 128
second quartile $\left(\mathrm{Q}_{2}\right), 66,362$
sets
complement, 14, 97-98
defined, 14, 93
intersections, 14, 96-97
members not in, 94
membership in, 94
subsets, 94-95
unions, 95-96
simple moving averages, 371
simple random samples, probability sampling, 167-168
simple regression analysis. See also multiple regression analysis; regression analysis
assumptions, 307-308, 370
autocorrelations, 308, 358, 370
Cochrane-Orcutt procedure, 308
coefficient of determination, 299-300
Durbin-Watson test, 308
errors in interpreting regression equation, 358
heteroscedasticity, 308, 358, 370
linear relationships, 284-286
population regression equation, estimating, 291-297
population regression equation, overview, 20, 289-290
regression equation formula, 293
regression equation intercept formula, 294
regression equation slope formula, 294
sample regression equation, 20, 291
software for, 306-307
White test, 308
simulation studies, 143
skewness of data distribution
negative, 49, 51
positive, 49, 52
slope coefficient $\left(\beta_{1}\right)$ of regression line, 289
slope of line (m), 20, 38, 285, 286
smoothing constant, time series, 345
smoothing techniques, time series
centered moving average, 343-344
exponential smoothing, 345-347
moving averages, 341-343
overview, 341
Solve My Math website, 141
spreadsheets
adjusted coefficient of determination, 315
ANOVA hypothesis, 249-250
population regression equation, 312
for regression analysis, 306-307
SPSS software, IBM, 306-307
squared units, 120
SSE (error sum of squares)
calculating, 242-244
constructing test statistic, 242
SST (total sum of squares) calculating, 245
constructing test statistic, 242
SSTR (treatment sum of squares)
calculating, 244-245
constructing test statistic, 242
overview, 244
standard deviation (σ)
binomial distribution, 128
chi-square distribution, 256
defined, 12,120
formula, 364
geometric distribution, 134
as measures of dispersion, 362
overview, 56
Poisson distribution, 137
population, finding, 62-64
population, formula, 64
probability distribution, 120, 128
sample, formula, 57-61
of sampling distribution, 178
standard error, 178
t-distribution, 190
uniform distribution, 146-147
versus variance, 61
standard error
defined, 178, 366
sampling distribution, 178
standard error of the estimate (SEE), 302
standard error of the regression (SER), 302-304
standard normal distribution. See also normal distribution
certainty property, 157
overview, 154
properties, 157-158
symmetry property, 157-158
versus t-distribution, 188-189
standard normal probabilities
Central Limit Theorem tables, 179
computing if Z is greater than or equal to specified value, 159
computing if Z is less than or equal to specified value, 155-158
computing in between, 160-161
computing overview, 154
properties, 157-158
standard normal random variable (Z), 154 , 272-273
standard normal tables
computing greater than or equal to standard normal probabilities, 159
computing in between standard normal probabilities, 160
computing less than or equal to standard normal probabilities, 155-158
estimating confidence intervals, 196, 272, 273
finding probabilities, 184
negative Z values, 272-273
overview, 154
positive Z values, 273-274
standard uniform probability distribution
defined, 143
formula, 149-150
uses, 143
statistical analysis, 153
statistical formulas
addition rule, 106-108, 363
alternative hypothesis, 202-205, 367
binomial distribution, 123, 125-126, 364
complement rule, 108-109, 363
confidence interval for population mean, 366
critical values, population variances, 369-370
expected value, 117-118, 364
geometric distribution, 131-132, 364
left-tailed test, 204, 367
multiplication rule, 109-110, 363
normal distribution, 365
null hypothesis, 202, 367
Poisson distribution, 135, 364
probability for standard mean, 365-366
regression equation, 358, 371
right-tailed test, 204, 367
standard deviation, 364
test statistic, equality of two population means, 277, 368-369
test statistic, population mean, 207-208, 367-368
test statistic, population variances, 266, 369-370
two-tailed test, 205, 367
uniform distribution, 147-150, 365
variance, 119-120, 364
statistical inference
confidence intervals, 18-19
defined, 18, 166
hypothesis testing, 19
statistics, 18,174
Statistics How To website, 127
strata, 170
stratified samples, probability sampling, 170-171
Student's t-distribution
confidence interval for population mean, 195
degrees of freedom, 189
versus F-distribution, 234
graphing, 190-192
hypothesis testing, 210
interval estimates for known population standard deviation, 195-199
interval estimates for unknown population standard deviation, 199-200
median, 189
moments, 189-190
point estimates, 194-195
point estimators, 194
probabilities, 193-194
properties, 188
purpose, 188
standard deviation, 190
versus standard normal distribution, 188-189
t-table, 193-194
variance, 189-190
Student's t-table, 193-194, 211, 323
subsets (С), 94
summary measures. See also moments
measures of association, 362
measures of central tendency, 361
measures of dispersion, 362
overview, 361
summation operator (Σ), 40-42, 73, 117, 118
sums, arithmetic means, 42
symmetrical data set, 49, 50-51, 150
systematic samples, probability sampling, 168-169
-T•
tables. See also standard normal tables ANOVA, 318
central limit theorem, 179
chi-square, 261, 264
coefficient of determination, 300
critical values, standard normal distribution, 213
F-table, 247-248, 278, 280, 319
Poisson, 135-136
standard error of $\beta_{1}, 303$
Student's t-distribution, 211, 305
t-table, 193-194
tails (distribution), 51, 152
t-distribution
confidence interval for population mean, 195
degrees of freedom, 189
versus F-distribution, 234
graphing, 190-192
hypothesis testing, 210
interval estimates for known population standard deviation, 195-199
interval estimates for unknown population standard deviation, 199-200
median, 189
moments, 189-190
point estimates, 194-195
point estimators, 194
probabilities, 193-194
properties, 188
purpose, 188
standard deviation, 190
versus standard normal distribution, 188-189
t-table, 193-194, 211, 323
variance, 189-190
test statistic
defined, 302
formula, 207-208
F-test, 317-318
t-test, 302-304, 321
tests. See also goodness of fit test; left-tailed test; right-tailed test; t-test; two-tailed test
Durbin-Watson, 308
F-test, 316-320
Jarque-Bera, 357
one-way ANOVA, 239, 247, 248
White, 308
Texas Instruments calculators, 127
third quartile $\left(\mathrm{Q}_{3}\right), 66,362$
TI-83 calculator, Texas Instruments, 127
TI-84 calculator, Texas Instruments, 127
time series regression analysis
defined, 328
exponential smoothing, 345-347
forecasting, 21-22, 336-337
forecasts, comparing, 348-349
possible effects, 328
regression model, 328-329
seasonal variation, 337-341
smoothing techniques, 341-344
trends, classifying, 329-332, 371
trends, estimating, 332-336
total sum of squares (TSS)
calculating, 245
computing, 299-300
constructing test statistic, 242
treatment mean square (MSTSR), 246
treatment sum of squares (SSTR)
calculating, 244-245
constructing test statistic, 242
overview, 244
trend effects, time series forecasting, 328
trend lines, 37, 86, 287-288
trend models forecasting, 22
trends, forecasting
estimating, 332-336
higher-order, 371
linear, 330-331, 335, 371
no trend, 329-330, 371
other possibilities, 332
quadratic, $331,336,371$
TSS (total sum of squares)
calculating, 245
computing, 299-300
constructing test statistic, 242
t-statistic, 302, 307
t-table, 193-194
t-test
comparing p-value with level of significance, 324-325
critical values, 304-305, 322-324
decision, 324
decision rule, 305-306
level of significance, 301-302, 321
null hypothesis, 301, 321
overview, 301
Student's t-distribution table, 305
test statistic, 302-304, 321
two values (\pm), 194
two-tailed test
as alternative hypothesis, 203, 277
dependent samples, 230
F-distribution, 279
formula, 367
with large sample, 215-216
overview, 203
population variance, $257,258,259,262-263$
with small sample, 212-213
t-test, 301, 323
two critical values, 209
two means, 221
two population means, 221
two population means with equal variance, 224
unequal variances, 276-277
two-way ANOVA, 239
Type 1 (false positive) error
F-test, 317
overview, 205-207, 235
t-test, 301-302
Type II (false negative error)
F-test, 317
overview, 205-207, 235
t-test, 301-302

- U •
unconditional (marginal) probabilities, 102-103
unexplained variation (RSS), 298-299
uniform distribution
defined, 142
expected value, 145-146
formula, 365
moments, 143-144
overview, 16, 139-140, 142-143
probability density function, 365
rectangle illustration, 143-144
standard deviation, 146-147
standard uniform distribution, 143
variance, 146
uniform probabilities
computing probability that X is between two constants, 148
computing probability that X is greater than or equal to $x, 147$
computing probability that X is less than or equal to $x, 147$
computing with formulas, 147-149
computing with graphs, 149-150
union (\cup), mathematical operation, 95-96
union of two events, probability of, 106-108
unique values, 95
universal set (S)
complement, 97-98
defined, 97, 99, 112
events, 99-100
unrelated variables, 36
- U
variables. See specific variables by name or type
variance
binomial distribution, 128
chi-square distribution, 255
defined, 12, 120
formula, 119-120, 364
geometric distribution, 133-134
as measures of dispersion, 362
overview, 55-56
Poisson distribution, 137
population, determining for, 62-64
population, formula, 61-62
probability distribution, 119-120, 128
sample, formula, 56-57
sampling distribution, 178
versus standard deviation, 61
t-distribution, 189-190
uniform distribution, 146
variance analysis (ANOVA). See also
F-distribution
alternative hypothesis, 240
critical value, finding, 247-248
degrees of freedom, 247-248
F-statistic, 246
F-table, 247-248
level of significance, 240-241
null hypothesis, 240
one-way, $239,247,248$
overview, 233, 239
table, 318
test statistic, computing, 241-246
two-way, 239
uses, 239
variance inflation factor (VIF), 325, 359
variation, 298-299
Venn diagram, 94-95, 96, 97, 98
vertical axis (y), 57, 86

- W

weighted arithmetic mean, 44-46, 268-269 weighted geometric mean, 46-48 weighted least squares (WLS) estimators, 294

uploaded by [stormrg]

388

Business Statistics For Dummies

White test, 308
width, interval, 144
Wikipedia website, 143

- X •
\bar{X} (sample mean)
arithmetic mean, 40-41
overview, 174
sample correlation, 73
sample covariance, 73
sample variance, 56
sampling distributions, 365-366
χ^{2} (chi-square distribution). See also
goodness of fit test; hypothesis testing,
population variance
applications, 252
chi-square table, 261, 264
features, 252-253
graphic illustration, 253-254
moments, 255-256
overview, 236, 252
for positive values, 252-253
positively skewed, 252-253
random variable, 255
x-axis, 57, 86
X s (random variables)
chi-square, 255
defined, 111
as function, 112
independent, 20, 283, 370
overview, 14-15
probability distribution. assigning, 114-116
role of, 111-114

- y

y-axis, 57,86

Z (standard normal random variable), 154
zero correlation, 72
zero covariance, 72

